Electrical Switching of Chiral Antiferromagnetism

by time news
  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article
    CAS

    Google Scholar

  • Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhang, Z. et al. Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning. Sci. Adv. 9, eade7439 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Shi, J. et al. Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars. Nat. Electron. 3, 92–98 (2020).

    Article
    CAS

    Google Scholar

  • Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).

    Article
    CAS

    Google Scholar

  • Zhang, P. et al. Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film. Phys. Rev. Lett. 123, 247206 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Wu, H. et al. Current-induced Néel order switching facilitated by magnetic phase transition. Nat. Commun. 13, 1629 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kent, A. D. Perpendicular all the way. Nat. Mater. 9, 699–700 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article
    CAS

    Google Scholar

  • Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article

    Google Scholar

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Shi, J. et al. Electrically controlled all‐antiferromagnetic tunnel junctions on silicon with large room‐temperature magnetoresistance. Adv. Mater. 36, 2312008 (2024).

    Article
    CAS

    Google Scholar

  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Yoon, J. Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Zheng, Z. et al. Effective electrical manipulation of a topological antiferromagnet by orbital torques. Nat. Commun. 15, 745 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article
    CAS

    Google Scholar

  • Kao, I. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Wang, F. et al. Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity. Nat. Mater. 23, 768–774 (2024).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhang, Y. et al. Room temperature field-free switching of perpendicular magnetization through spin–orbit torque originating from low-symmetry type II Weyl semimetal. Sci. Adv. 9, eadg9819 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhao, T. et al. Enhancement of out-of-plane spin–orbit torque by interfacial modification. Adv. Mater. 35, 2208954 (2023).

    Article
    CAS

    Google Scholar

  • Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article
    PubMed

    Google Scholar

  • Kajale, S. N. et al. Field-free deterministic switching of all-van der Waals spin–orbit torque system above room temperature. Sci. Adv. 10, eadk8669 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Article
    CAS
    PubMed

    Google Scholar

  • Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit‐torque‐driven spin dynamics in the non‐collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    Article
    CAS

    Google Scholar

  • Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Sugimoto, S. et al. Electrical nucleation, displacement, and detection of antiferromagnetic domain walls in the chiral antiferromagnet Mn3Sn. Commun. Phys. 3, 111 (2020).

    Article
    CAS

    Google Scholar

  • Liu, X. et al. Topological spin textures in a non‐collinear antiferromagnet system. Adv. Mater. 35, 2211634 (2023).

    Article
    CAS

    Google Scholar

  • Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Here’s a structured portrayal of the provided references, extracting key information:

    Reference 29:

    Authors: Liu, C, et al.

    Title: Symmetry-dependent field-free switching of perpendicular magnetization

    Journal: Nat. Nanotechnol.

    Volume: 16

    Pages: 277-282

    Year: 2021

    DOI: 10.1038/s41565-020-00826-8

    Reference 30:

    Authors: Kajale,S. N. et al.

    Title: Field-free deterministic switching of all-van der Waals spin–orbit torque system above room temperature.

    Journal: Sci. Adv.

    Volume: 10

    Article Number: eadk8669

    Year: 2024

    DOI: 10.1126/sciadv.adk8669

    Reference 31:

    Authors: kuroda, K, et al.

    Title: Evidence for magnetic Weyl fermions in a correlated metal

    Journal: Nat. Mater.

    Volume: 16

    Pages: 1090-1095

    Year: 2017

    DOI: 10.1038/nmat4987

    Reference 32:

    Authors: Pal, B.et al.

    Title: Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque.

    Journal: Sci. Adv.

    Volume: 8

    Article Number: eabo5930

    Year: 2022

    DOI: 10.1126/sciadv.abo5930

    Reference 33:

    Authors: Yan,G. Q. et al.

    Title: Quantum sensing and imaging of spin–orbit‐torque‐driven spin dynamics in the non‐collinear antiferromagnet Mn3Sn.

    Journal: Adv. Mater.

    volume: 34

    Article Number: 2200327

    Year: 2022

    DOI: 10.1002/adma.202200327

    Reference 34:

    Authors: Shi, S. et al.

    Title: All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures.

    Journal: Nat. Nanotechnol.

    Volume: 14

    Pages: 945–949

    Year: 2019

    DOI: 10.1038/s41565-019-0525-8

    You may also like

    Leave a Comment